

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : FLAT(16CS517) Course & Branch: B.Tech - CSE & CSIT

Year & Sem: III-B.Tech & I-Sem **Regulation:** R16

UNIT I Introduction To Finite Automata

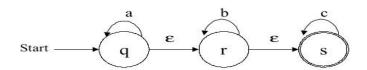
1. a) Consider the below finite automata and check the strings are accepted or not

States	Input Alphabtes		
(Q)	0	1	
-> q0	q1	q3	
q1	q0	q2	
(q2)	q3	q1	
q3	q2	q0	

(i) 1110

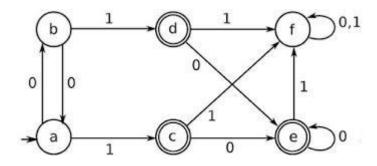
(ii) 0001

(iii) 1010


[L2,2+2+2M]

b) Define NFA. What are the differences between DFA & NFA?

[L2,4M]


2. Convert the following NFA with ε moves to DFA without ε moves.

[L2,10M]

3. Minimize the following finite automata.

[L3,10M]

4. Convert the following Mealy machine into its equivalent Moore machine. [L2,10M]

Present State	I/P	=0	I/P	=1
State	Next State	O/P	Next State	O/P
\rightarrow A	С	0	В	0
В	A	1	D	0
С	В	1	A	1
D	D	1	С	0

5. a) Write about relations on sets. [L1,2M]b) Define Grammar? What are the tuples? [L1,2M]c) Define Finite Automaton. [L2,2M]d) Show that (0*1*)* = (0+1)*. [L3,2M]e) Define Mealy machine and Moore machine. [L2,2M]6. a) Discuss Chomsky's Hierarchy of formal languages. [L1,5M]b) Explain briefly about DFA and NFA? [L1,5M]

7. a) Define Moore machine? Construct Mealy machine corresponding to Moore machine? [L2,5M]

States	Next States		Output
(Q)	I/P=0	I/P=1	Output
-> q1	q1	q2	0
q2	q1	q3	0
q3	q1	q3	1

b) Prove i)
$$R=(1+00*1) + (1+00*1) (0+10*1)* (0+10*1)* = 0*1(0+10*1)*$$

ii) $R= C+1*(011)*(1*(011)*)* = (1+011)*$ [L3, 21/2+21/2M]

8. Write down procedure for Myhill- Nerode theorem with a given example.

("*" means final states). [L2, 10M]

,	Next State		
Present State	I/P=a	I/P=b	
→ A	В	F	
В	A	F	
С	G	A	
D	Н	В	
Е	A	G	
*F	Н	С	
*G	A	D	
*H	A	С	

9. a) Define relations on set and explain its property with an example

[L1,3M]

b) Define NFA and DFA. Construct DFA for the given NFA

[L2,7M]

	Nex	Next state		
	0	1		
q0	q0,q1	q0		
q1	q2	q1		
q2	q3	q3		
(q3)	-	q2		

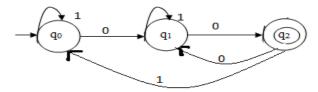
10. a) List out the identities of Regular expression.

[L3,4M]

b) From the identities of RE, prove that

[L3,2M]

$$ii)(0+011*)+(0+011*)(01+0100*)(01+0100*)*=01*(010*)*$$


[L3,2M]

c) Define finite automata? Explain detail about the tuples .

[L2,2M]

UNIT II Regular Languages

- 1. a) Construct an equivalent FA for the given regular expression (0+1)*(00+11)(0+1)*[L1,5M]b) State Arden's theorem and construct the regular expression for the following FA using Arden's [Ll, 5M]
- 2. Explain about Arden's theorem, for constructing the RE from a FA with an example. [L1,10M]

3. a) List out the identities of Regular expression.

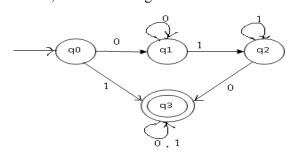
[L1,4M]

b)From the identities of RE, prove that

[L2,6M]

- i) 10+(1010)*[^+(1010)*]=10+(1010)*
- ii)(0+011*)+(0+011*)(01+0100*)(01+0100*)*=01*(010*)*
- 4. a) Consider the below finite automata and check the strings are accepted or not

[L3,6M]

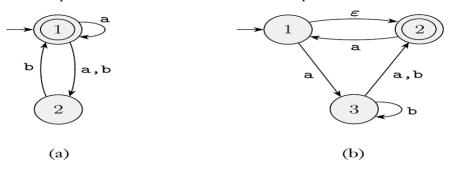

States	Input Alphabtes		
(Q)	0	1	
->q0	q1	q3	
q1	q0	q2	
(q2)	q3	q1	
q3	q2	q0	

- (i) 1110
- (ii) 0001
- (iii) 1010
- b) Construct an equivalent FA for the given regular expression (0+1)*(00+11)(0+1)*

[L3,4M]

5. a) Prove R=Q+RP has unique solution, R=QP*

- [L1,3M]
- b) Explain about the Arden' theorem, for constructing the RE from a FA with an example [L1, 7M]


- 6. Explain how equivalence between two FA is verified with an example. [L2, 10M]
- 7. Prove that the language $L = \{a^nb^n \mid n \ge 1\}$ is not regular using pumping lemma [L2, 10M] with procedure.

8. a) Construct an equivalent FA for the given regular expression (0+1)*(00+11)(0+1)* [L3,5M] b) State Arden's theorem and construct the regular expression for the following FA using Arden's theorem.

[L3, 5M]

9. a) Write the process of equivalence two FA's? Find whether the equivalence two FA's or not. [L3,7M]

b) List out the identities of Regular expression.

[L3, 3M]

10. Prove that the language $L = \{a^nb^n c^n \mid n \ge 1\}$ is not regular using pumping lemma.

[L3, 10M]

[L3,6M]

UNIT III

Context Free Grammars and Languages

1. Write the procedure and Eliminate left recursion from the following Grammar [L2,10] $E \rightarrow E + T/T$ $T \rightarrow T*F/F$ $F\rightarrow (E)/id$ 2. a) Explain about derivation and parse trees? Construct the string 0100110 from the Leftmost and Rightmost derivation. $S \rightarrow 0S/1AA$

 $A \rightarrow 0/1A/0B$ $B \rightarrow 1/0BB$ [L2,5M]

b) Find the parse tree for generating the string 11001010 from the given grammar.[L2,5M]

 $S \rightarrow 1B/0A$

 $A \rightarrow 1/1S/0AA$

 $B \rightarrow 0/0S/1BB$

3. a) Define Ambiguous grammar. [L2,4M]

b) Remove Left recursion from the grammar $S \rightarrow Sab/T$

 $T \rightarrow Tcd/F$

 $F \rightarrow Fa/G$ [L2,6M]

4. a) Explain Left recursion and Left factoring. [L3,4M]

b) Perform left factor from the grammar $A \rightarrow abB/aB/cdg/cdeB/cdfB$ [L3,6M]

5. Simplify the following context free grammar. (Here, Λ stands for epsilon(ϵ)). [L4,10M]

 $S \rightarrow TU|V$

 $T \rightarrow aTb | \Lambda$

 $U \rightarrow cU | \Lambda$

 $V \rightarrow aVc|W$

 $W \rightarrow bW | \Lambda$

6. Convert the following grammar into Greibach normal form. [L4,10M]

S→AA/a

 $A \rightarrow SS/b$

7. a) Write the process for Convert the grammar into CNF? [L3,4M]

b) Convert the following grammar into CNF.

S→bA/aB B→aBB/bS/a. A→bAA/aS/a

8. a) What is linear grammar? Explain in detail with example. [L3,4M]

b)Explain the closure properties of context free languages. [L3,6M]

9. a)Remove the unit production from the grammar

 $S \rightarrow AB, A \rightarrow E, B \rightarrow C, C \rightarrow D, D \rightarrow b, E \rightarrow a$ [L3,4M]

b)Remove ϵ productons from the grammar

 $S \rightarrow ABaC, A \rightarrow BC, B \rightarrow b/\epsilon, C \rightarrow D/$ $\epsilon.D \rightarrow d$ [L3,6M]

10. a) Write about Decision problems for CFLs with example? [L3,5M]

b) What is the differentiate between CFG and Regular Language? [L3,4M]

<u>UNIT IV</u> Pushdown Automata

1.	a) Construct a PDA which recognizes all strings that contain equal number	
	of 0's and 1's.	[L2,6M]
	b) A PDA is more powerful than a finite automaton. Justify this statement.	[L2,4M]
2.	Construct PDA from the following Grammar.	
	S→ aB	
	$B \rightarrow bA/b$	
	A→ aB	[L2,10M]
3.	Construct PDA from the following Grammar	
	S→0BB	G 2 10 E
	B→0S/1S/0	[L2,10M]
4	Show an ID for the string 010000 is generated for PDA?	EL O 101/EL
4.	Construct a CFG equivalent to the following PDA. PDA=((n, n), (0, 1), S. n. n. (7, N)), where n is initial state, n is final state.	[L2,10M]
	PDA={ $(p, q), (0, 1), \delta, p, q, (Z, X)$ }, where p is initial state, q is final state. δ is defined as $\delta(p, 0, Z) = (p, XZ), \delta(p, 0, X) = (p, XX), \delta(p, 1, X) = (q, \epsilon), \delta(p, 1, X) = (p, \epsilon)$	$S(n \in 7) - (n \in 3)$
	[L3,10M]	, o(p,e,z)=(p,e).
5.	a) Construct an equivalent PDA for the following CFG	[L3,7M]
	S→aAB bBA	, ,
	$A \rightarrow bS \mid a$	
	$B \rightarrow aS \mid b$	
	b) Explain the informal introduction and formal definition of PDA.	[L2,3M]
6.	a) Define Instantaneous description (ID) in PDA.	[L2,5M]
	b) Explain about the graphical notation of PDA.	[L2,5M]
7.	a) Write the process for convert PDA into an equivalent CFG.	[L4,4M]
	b) Convert the following PDA into an equivalent CFG.	[L4,6M]
	$\delta (q_0,a_0,z_0) \rightarrow (q_1,z_1z_0)$	
	$\delta(q_0,b,z_0) \rightarrow (q_1,z_2z_0)$	
	$\delta(q_1,a,z_1) \rightarrow (q_1, z_1z_1)$	
	$\delta(q_1,b,z_1) \rightarrow (q_1,\lambda)$	
	$\delta(q_1,b,z_2) \rightarrow (q_1,z_2z_2)$	
	$\delta(q_1,a,z_2) \rightarrow (q_1,\lambda)$	
	$\delta(q_1, \lambda, z_2) \rightarrow (q_1, \lambda) // \text{ accepted by the empty stack.}$	
8.	a) Define push down automata? Explain acceptance of PDA with empty st	ack. [L2,5M]
	b) Define Instantaneous description (ID) in PDA.	[L2,5M]
9.	a) Explain about the graphical notation of PDA.	[L2,4M]
	b) Construct an equivalent PDA for the following CFG.	[L3,6M]
	S→aAB bBA	
	A→bS a	
	$B \rightarrow aS \mid b$.	
10	. Explain Deterministic Push down Automata with example?	[L2, 12M]

FLAT

Page 7

<u>UNIT - V</u> Turing machines & Undecidability

1.	Construct a Turing machine which multiplies two unary numbers.	[L1,10M]	ĺ	
2.	Construct a Turing machine for Language L=a ⁿ _b ⁿ , where n>0 [L1	1,10M]		
3.	Construct a Turing machine that recognizes the language L={anbn, n>1	}. Show an ID for th	ıe	
	string 'aabb' with tape symbols.	[L2,10M]]	
4.	Explain conversion of regular Expression to TM with example.	[L3,10M]]	
5.	Explain the various types of Turing machine.	[L3,10M]]	
6.	Explain Universal Turing machine	[L3,10M]]	
7.	7. a)Design a multi head Turing Machine for checking whether a binary string is a			
	palindrome or not. Show the ID for 1001. [L3,6M]			
	b) Write about Universal TM. [L3	3,4M]		
8.	Explain in detail about variations of the TM?	[L3,10M]]	
9.	Construct a Turing machine that recognizes the language a ⁿ b ⁿ c ⁿ .	[L3,10M]]	
10	a) Define PCP. Verify whether the following lists have a PCP solution	. [L3,7M]		
	$\binom{abab}{ababaaa}$, $\binom{aaabbb}{bb}$, $\binom{aab}{baab}$, $\binom{ba}{baa}$, $\binom{ab}{ba}$, $\binom{aa}{a}$.			
	b) Describe linear bounded automaton.	[L3,3M]		

Prepared by: B. PAVAN KUMAR & R.M.MALLIKA